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ABSTRACT 

We show that ergodic algebraic automorphisms of the infinite toms are measure 
isomorphic to Bernoulli shifts. Using the same techniques, we also show that 
the existence of such an automorphism with finite entropy is equivalent to an 
open problem in algebraic number theory. 

1. Introduction 

One of the simplest examples of a measure-preserving transformation is a con- 

tinuous algebraic automorphism of a compact abelian group equipped with Haar 

measure. The ergodic properties of such automorphisms have been given close at- 

tention. Long ago it was realized that ergodicity of an automorphism is equiv- 

alent to aperiodicity of its dual automorphism, and that these imply that the auto- 

morphism is already strongly mixing [-4]. Rokhlin [10] showed that ergodicity even 

implies that the automorphism is measure isomorphic to a Kolmogorov auto- 

morphism. Recently Katznelson [5] proved that for automorphisms of finite 

dimensional tori, ergodicity implies the strongest form of mixing, namely being 

measure isomorphic to a Bernoulli shift. 

The purpose of this paper is to extend Katznelson's result to the infinite dimen- 

sional torus. We also show how attempting to construct an ergodic automorphism 

of the infinite torus with finite entropy inevitably leads to an open problem in 

algebraic number theory. 

2. Automorphisms of the infinite torus 

Our aim is to prove the following result. 
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THEOREM 1. Ergodic automorphisms of the infinite torus are Bernoulli. 

PROOF. Let us first introduce notation and recall some facts. T OO denotes the 

countable direct product of copies of the circle group T. Z~ denotes the countable 

direct sum of copies of the integers Z and is the dual group of Too. Ar~automorphism 

A of Too induces its dual automorphism B of Zoo in the usual way. 

Since we will mostly find ourselves in the dual group, it is a useful abbreviation 

to say for B an automorphism of a discrete group H that B is Bernoulli on H (or 

(H, B) is Bernoulli) if the dual automorphism /~ on the compact group /(r is 

measure isomorphic to a Bernoulli shift. Recall that/~ is ergodic o n / ~  if and only 

if B is aperiodic on H, that is, Bkh = h with k > 0 implies h = 0. The dual of 

Katznelson's result then has the following statement. 

TORUS THEOREM. Aperiodic automorphisms of finite rank, free abelian 

groups are Bernoulli. 

Ornstein's theorem that factors of Bernoulli shifts are Bernoulli [9] has its 

dual as follows. 

FACTOR THEOREM. I f  B is Bernoulli on H and H o is a completely invariant 

subgroup of H, then B is Bernoulli on H o. 

Similarly, Ornstein's theorem that a transformation which is Bernoulli on each 

of an increasing sequence of a-subalgebras is Bernoulli on their span [8] also 

has its dual. 

MONOTONE THEOREM. I f  B is an automorphism of H and {Hn} is an increasing 

sequence of completely invariant subgroups on each of which B is Bernoulli, 

then B is Bernoulli on I..J~H n. 

We return to the case where B is an automorphism of 7/oo. If  R denotes the ring 

Z[x, x -  1], consider 7?~o as an R-module via the action 

m 

Then the term R-submodule means the same as completely invariant subgroup. 

Suppose the R-torsion submodule of Zoo were a direct summand with a comple- 

mentary free R-submodule. Then the Torus and Monotone theorems would show 

that B is Bernoulli on the torsion submodule, while B is automatically Bernoulli 

on a free R-submodule because there it is isomorphic to a direct sum of shifts on 

7]oo. Since the direct sum of Bernoulli automorphisms is Bernoulli (dualize this 

fact for products), B would be Bernoulli on ~ .  Unfortunately, R is not a principal 
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ideal domain, so we cannot invoke the Structure Theorem for modules over such 

domains to obtain the suggested splitting. The obstruction to R being principal 

lies in the nontrivial ideal structure of the coefficient ring 7/. The purpose of the 

following is t%wipe out this ideal structure by embedding the coefficients into a 

field. We can then apply the Structure Theorem to obtain a splitting of the larger 

system which suffices for our needs. 

Notice that Z| is a subgroup of Qoo, the countable direct sum of copies of the 

rationals Q. We can extend B to an automorphism of Q~o by putting 

B(q) = (1/m)B(mq) 

for q EQ~o, where m is any integer such that mq ~ 7/ .  Then Qoo is a module over 

the ring S = Q[x,x -x] via the same action as before. The relevant algebraic 

properties of these rings are that R is noetherian and S is principal, as one easily 

verifies. 

Since Z~o is countable, the Monotone Theorem shows that it suffices to prove 

that B is Bernoulli on every finitely generated R-submodule of 7/~ o. Let H be the 

R-submodule of 7'| generated by z~, ..., zn E Zoo, and K be the S-submodule of 

Q| generated by z~, ..., zn. Since K is a finitely generated module over a principal 

ideal domain, K = F @ U, where F is a free S-module of rank r and U is the 

S-torsion submodule of K. 

The action of B on F is isomorphic to the product of r shifts on Qoo. Hence 

(F, B) is Bernoulli. 

Since an element of 7/oo is annihilated by an element of R if and only if it is 

annihilated by an element of S, the R-torsion submodule T of H is H r U. It 

follows that U is the increasing union of the R-submodules (m !)-IT. Thus in 

order to show that (U,B) is Bernoulli, it suffices to show by the Monotone 

Theorem that each ((m !)-~T, B) is Bernoulli. Since the action of B on (m !)- iT is 

isomorphic to its action on T, we are reduced to considering (T, B). 

We claim that T is a finite rank, free abelian group. Once this is established, 

then (T, B) is Bernoulli by the Torus Theorem. Since R is noetherian, T is generated 

over R by a finite number of elements, say Yl, "", Yk. There are polynomials f~(x) 

in Z[x] with f~(B)y, = 0. The set of elements {Biy,: 0 < j  < degf~, 1 < i < k} 

depends on only a finite number of coordinates in 7/| and since T consists of 

linear combinations of these elements, the same is true of T. Hence T is contained 

in the finite rank, free abelian group generated by the coordinates where T is 

nonzero, and so T itself is a finite rank, free abelian group. 
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Thus we have shown that B is Bernoulli on both F and U. This proves that B is 

Bernoulli on F ~ U = K. Since H is an invariant subgroup of K, we have B 

Bernoulli on H by the Factor Theorem. This completes the proof. 

REMARI~ 1. Essentially the same proof shows that an ergodic endomorphism 

of T ~~ onto itself is Bernoulli, that is, that its natural extension is measure 

isomorphic to a Bernoulli shift. The only modifications necessary are an extension 

of  the Torus Theorem to endomorphisms (see [5]) and replacement of  R and S 

by 2~[x] and Q[x],  respectively. 

REMARI~ 2. The algebraic techniques used here are not as special as the 

reader may surmise. Using them together with an idea of  B. Weiss we can show 

that Theorem 1 is true for T | replaced by any group whose dual is a torsion 

group. 

3. Finite entropy 

It is natural to ask whether there are any ergodic automorphisms of T ~ with 

finite entropy. By entropy we mean either topological or Haar measure theoretic 

entropy, since these coincide for group automorphisms [1]. 

The most direct way of  constructing an automorphism A of It ~~ is to multiply 

automorphisms A i of finite dimensional tori. Then A is ergodic if and only if the 

same is true of each Ai. If  h(A) denotes the entropy of A, then h(A) = h(A~) 
+ h(A2)+ ". .  Thus in order for this process to yield an ergodic A with finite 

entropy, it is sufficient that there exist ergodic automorphisms of  finite dimensional 

tori with arbitrarily small entropy. Theorem 2 below shows this is also necessary. 

Let Ao be an automorphism of T n. With respect to the standard basis on the 

dual group 2~ n, the dual automorphism of Ao is given by an n x n integer-valued 

matrix with determinant + 1. If f ( x ) =  I-[~(x- 2i)~ 2r[x] is the characteristic 

polynomial of this matrix, then it is known that (see [3]) 

(*) h(Ao)- h(f) = ~ log[2,[. 
In,l>1 

The roots 2~ are by definition algebraic integers whose product is ___ 1. Kronecker 

[6] proved that if all the conjugates of  an algebraic integer lay on the unit circle, 

then they must be roots of unity. Since A o is ergodic if and only if f (x) has no 

roots which are roots of unity (see [4]), it follows that h(Ao) > 0 if Ao is ergodic. 

The problem of minimizing the right-hand side of (*) for ergodic automorphisms 

dates back about forty years to a paper of D.H. Lehmer [7], where it arose while 
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using a technique to factor large integers. It is still unknown whether this quantity 

can be arbitrarily small. In the same paper Lehmer found the smallest value 

known to date, namely log 1.176280821, which corresponds to 

f ( x )  = x l~ + x g - x 7 - x 6 -  x 5 -  x 4 -  x 3 + x + l .  

C.L. Siegel [11] showed that if just one of the 2i is on or outside the unit circle 

(that is, this root is a Pisot-Vijayaraghavan number), then the logarithm of the 

positive root of x 3 - x - 1 (about log 1.324) is the smallest possible. Finally, 

P.E. Blanksby and H.L. Montgomery [2] have proved that 

( 1 )  
h ( A o ) > l o g  1 + 5 2 n  log 6n ' 

where Ao acts ergodically on T .  

THEOREM 2. Eroodic automorphisms  of  T ~ with f ini te  entropy exist  i f  and 

only  i f  there are ergodic automorphisms  of  f ini te  d imensional  tori with arbi- 

t rar i ly  smal l  entropy.  

PROOF. Sufficiency follows from the above remarks. 

Conversely, suppose A is an ergodic automorphism of T | with h(A) < oo. 

Consider the dual automorphism B on Zoo, and treat Zoo as an R = Z[x,x -1] 

module as in the previous section. We claim that 77oo is a torsion R-module. 

Suppose the contrary. Then there would be a z E 77oo such that for any nonzero 

polynomial f ( x ) ,  f ( B ) z  v~ O. Then the action of B on R z  would be isomorphic to 

the shift on Zoo. This means (T ~176 A) would have a factor isomorphic to the shift 

on T oo . Since the entropy of the shift is infinite and entropy can only drop when 

passing to factors, we obtain the contradiction h(A) = oo. 

We now establish an R-module analogue of the primary decomposition for 

abelian groups, splitting up most of 77~ using irreducible polynomials instead of  

prime numbers. Recall that irreducibility in 77[x] and Q[x] coincide by the Gauss 

lemma. Let p(x) be an irreducible polynomial in 71Ix], and put 

H(p) = {z e 77oo : p(B)kz = 0 for some k > 1 }. 

Then for distinct irreducibles p(x) and q(x) the corresponding R-submodules H(p) 

and H(q) have trivial intersection. For if z ~ H(p) ("l H(q),  there are k and m such 

that p(B)kz = 0 = q(B)mz. Since pk and q" are relatively prime in Q[x],  there are 

r(x) and s(x) in Q[x] with r(x)p(x) k + s(x)q(x) m = 1. For some integer n we have 
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nr(x), ns(x)E7/[x]. Then nz = nr(B)p(B)kz + ns(B)q(B)mz = 0, which forces 

z = 0 .  

Also note that 7_ o / ~ H(p) is a torsion group. For any z e Zoo is annihilated by 

some polynomial f(x) with relatively prime coefficients. Let 

f(x) = pl(x) e' ...pm(x) ~" 

be its decomposition into irreducibles, which can be chosen to be in Z[x] by the 

Gauss lemma. Put f~(x)=f(x)/pi(x) e'. Then the fi(x) are relatively prime 

polynomials, so as before there are ri(x) ~ 7/[x] with rl(x)fl(x ) + ... + rm(x)fm(x) 

= n ~ Z. Then r~(B)f~(B)z e H(pi), so that nz ~ n ( P l ) ~  ..'@ H(p,~). This shows 

that Zoo/~ H(p) is indeed a torsion group. 

We employ finiteness of entropy again to show that each H(p) has finite group 

rank rk H(p). An argument similar to one in the proof of Theorem 1 shows that 

H(p) is the increasing union of finite rank invariant subgroups. I f  K is such a 

subgroup, then since a power of p(B) annihilates K, the characteristic polynomial 

of B restricted to K has the form p(x) k, where k" deg p = rk K. We denote the 

entropy of /~  on g by h(K, B). Then h(K, B) = h ( p  k) = k .  h(p), where h(p) is 

defined as in (*). Hence 

This shows that 

r k K  
deg p 
- - h ( p )  = h(K, B) < h(A). 

rk H(p) < h(A)deg p < oo. 
= h ( p )  

Since Zoo/ �9  H(p) is a torsion group, and each H(p) has finite rank, infinitely 

many of the H(p) are nonzero. On these B is aperiodic, so that h(H(p), B) > 0 if 

H(p) # O. By the additivity of entropy over direct sums, 

h(H(p), B) = h(~vH(p), B) ~ h(Zoo, B) = h(h) < oo. 
P 

Hence there are H(p) on which B has arbitrarily small entropy, and the duals of 

these H(p) are isomorphic to finite dimensional tori. This finishes the proof. 
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